I=π4∫0log(1+tanx)dx
→I=π4∫0log(1+tanx)dx
=π4∫0log[1+tan(π4−x)]dx
⎛⎜⎝∵a∫0f(x)dx=a∫0f(a−x)dx⎞⎟⎠
=π4∫0log⎡⎢
⎢⎣1+tanπ4−tanx1+tanπ4⋅tanx⎤⎥
⎥⎦dx
=π4∫0log[1+1−tanx1+tanx]dx
=π4∫0log[1+tanx+1−tanx1+tanx]dx
=π4∫0log(21+tanx)dx
=log2dx−π4∫0log(1+tanx)dx
∴=π4∫0log2dx−I
∴2I=log2[x]π/40
=log2(π4−0)=π4⋅loge2
∴I=π8log2.