wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that π/40log(1+tanx)dx=π8log2e.

Open in App
Solution

I=π40log(1+tanx)dx
I=π40log(1+tanx)dx
=π40log[1+tan(π4x)]dx
a0f(x)dx=a0f(ax)dx
=π40log⎢ ⎢1+tanπ4tanx1+tanπ4tanx⎥ ⎥dx
=π40log[1+1tanx1+tanx]dx
=π40log[1+tanx+1tanx1+tanx]dx
=π40log(21+tanx)dx
=log2dxπ40log(1+tanx)dx
=π40log2dxI
2I=log2[x]π/40
=log2(π40)=π4loge2
I=π8log2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Heights and Distances
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon