wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 1+cosθ1cosθ=tan2θ(secθ1)2

Open in App
Solution

R.H.S.
1+cosθ1cosθ
Divide and multiply above expression by 1cosθ we get
(1+cosθ1cosθ)(1cosθ1cosθ)
(1cos2θ(1cosθ)2) (a+b)(ab)=(a2b2)
(sin2θ(1cosθ)2)
divide numerator and denominator by cos2θ we get
(sin2θcos2θ(1cosθ)2cos2θ)

tan2θ(1cosθ1)2 sinθcosθ=tanθ

tan2θ(secθ1)2=L.H.S
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon