Prove that n1111+n55+n33+n62165 n is a positive integer for all nϵN.
P(n):n1111+n55+n33+n62165 n is a positive integer
For n = 1
111+15+13+62165=15+33+55+62165=165165
Which is a positive integer
Let P(n) is true for n = k, so
k1111+k55+k33+62k165 is a positive integer
k1111+k55+k33+62k165=λ ......(i)
For n = k + 1
(k+1)1111+(k+1)55+(k+1)33+62165(k+1)
=111[k11+11k10+55k9+165k8+330k7+462k6+462k5+330k4+165k3+55k2+11k+1]+15[k5+5k4+10k3+10k2+5k+1]+13[k3+3k2+3k+1]+62165[k+1]
=[k1111+k55+k33+62k165]+k10+5k9+15k8+30k7+42k6+42k5+30k4+15k3+5k2+1+111+k4+2k3+2k2+k+15+k2+k+13+62165
=λ+k10+5k9+15k8+30k7+42k6+42k5+31k4+17k3+8k2+2k+1
= An integer
⇒ P(n) is true for n = k + 1
⇒ P(n) is true for all n ϵ N by PMI.