Prove that in any △ABC, cos A=b2+c2−a22bc, where a, b and c are the magnitudes of the sides opposite to the vertices A, B and C, respectively.
Here, components of C are c cos A and c sin A is drawn.
Since, −−→CD=b−c cos AIn △BDC, a2=(b−c cos A)2+(c sin A)2⇒ a2=b2+c2cos2A−2bc cos A+c2sin2A⇒ 2bc cos A=b2−a2+c2(cos2A+sin2A)∴ cos A=b2+c2−a22bc