Prove that ∫sin17xdx=−sin16xcosx17+1617∫sin15xdx+c.
Open in App
Solution
∫sin17xdx
Integration by parts when sin16x is the differentiating term and sinx is integrating term =sin16x∫sinxdx−∫ddx(sin16x)(∫sinxdx)dx=sin16x(−cosx)+∫16sin15xcos2xdx=−sin16xcosx+16∫sin15x(1−sin2x)dx=−sin16xcosx+16∫sin15x−16∫sin17xdx17∫sin17xdx=−sin16xcosx+16∫sin15x∫sin17xdx=−sin16xcosx17+167∫sin15x+C