LHS
(1+i)4(1+1i)4
=(1+i)2(1+1i)2(1+i)2(1+1i)2
=(1+i)2(1+i)2(1+1i)2(1+1i)2
=(12+i2+2i)(12+i2+2i)(12+1i2+2i)(12+1i2+2i)
=(1−1+2i)(1−1+2i)(12+1−1+2i)(12+1−1+2i)
=2i×2i×2i×2i
=16
RHS
Prove that: (i) in+in+1+in+2+in+3=0 (ii) i107+i112+i117+i122=0 (iii) (1+i)4×(1+1i)4=16