(1×2×5)+(2×3×7)+(3×4×9)+⋯
p(n)=(1×2×5)+(2×3×7)+⋅+[n×(n+1)×(2n+3)]
n=1
Lhs=1×(2)×(5)=10
Rhs=1(1+1)(1+2)(3+7)6
=2×3×106=10
true for n=1
then true for k,
sop(k)=(1×2×5)+⋅+k(k+1)(2k+3)
=k(k+1)(k+2)(3k+7)6
Nowp(k+1)=(3k4+16k3+27k2+14k)/6
=[(1×2×5)+(2×3×7)+⋯+k(k+1)(2k+3)]
+(k+1)(k+2)(2k+5)
=k(k+1)(k+2)(3k+7)6+(k+1)(k+2)(2k+5)
=3k4+16k3+27k2+14k+12k3+66k2+114k+606
=3k4+28k3+93k2+128k+606
hence true for k+1
∴p(n) is true ∀n∈IN