L.H.S
(cosecA−sinA)(secA−cosA)sec2A
We know that
sinθ=1cosecθ
cosθ=1secθ
tanθ=1cotθ
Therefore,
=(1sinA−sinA)(1cosA−cosA)(1cos2A)
=(1−sin2AsinA)(1−cos2AcosA)(1cos2A)
We know that
cos2x=1−sin2x
Therefore,
=(cos2AsinA)(sin2AcosA)(1cos2A)
=(sinAcosA)
=tanA
Hence, proved.