wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (cscAsinA)(secAcosA)=1tanA+cotA

Open in App
Solution

L.H.S=(cosecAsinA)(secAcosA)

=(1sinAsinA)(1cosAcosA) where cscA=1sinA and secA=1cosA

=(1sin2AsinA)(1cos2AcosA)

=(cos2AsinA)(sin2AcosA) where 1sin2A=cos2A and 1cos2A=sin2A

=sinAcosA
R.H.S=1tanA+cotA

=1sinAcosA+cosAsinA

=1sin2A+cos2AsinAcosA

=sinAcosA where sin2A+cos2A=1

Hence L.H.S=R.H.S

Proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identity- 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon