1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration by Parts
Prove that : ...
Question
Prove that :
[
csc
(
90
o
−
θ
)
−
sin
(
90
o
−
θ
)
]
[
csc
θ
−
sin
θ
]
[
tan
θ
+
cot
θ
]
=
1
Open in App
Solution
[
csc
(
90
°
−
θ
)
−
sin
(
90
°
−
θ
)
]
[
csc
θ
−
sin
θ
]
[
tan
θ
+
cot
θ
]
=
1
⇒
L
.
H
.
S
=
[
csc
(
90
°
−
θ
)
−
sin
(
90
°
−
θ
)
]
[
csc
θ
−
sin
θ
]
[
tan
θ
+
cot
θ
]
=
(
sec
θ
−
cos
θ
)
(
csc
θ
−
sin
θ
)
(
tan
θ
+
cot
θ
)
=
(
1
−
cos
2
θ
cos
θ
)
(
1
−
sin
2
θ
sin
θ
)
(
tan
θ
+
cot
θ
)
=
sin
2
θ
cos
θ
.
cos
2
θ
sin
θ
(
tan
θ
+
cot
θ
)
=
sin
θ
.
cos
θ
(
sin
θ
cos
θ
+
cos
θ
sin
θ
)
=
sin
θ
.
cos
θ
(
sin
2
θ
+
cos
2
θ
sin
θ
.
cos
θ
)
=
sin
2
θ
+
cos
2
θ
=
1
⇒
L
.
H
.
S
=
R
.
H
.
S
Hence, the answer is proved.
Suggest Corrections
0
Similar questions
Q.
Prove that:
tan
θ
+
sin
θ
tan
θ
−
sin
θ
=
sec
θ
+
1
sec
θ
−
1
Q.
Prove that
s
i
n
(
90
o
−
θ
)
c
o
s
e
c
(
90
o
−
θ
)
−
c
o
t
(
90
o
−
θ
)
=
1
+
s
i
n
θ
Q.
Prove
→
sin
(
90
o
−
θ
)
cos
(
90
o
−
θ
)
=
tan
θ
1
+
tan
2
θ
Q.
Prove that:
sec
θ
+
tan
θ
-
1
tan
θ
-
sec
θ
+
1
=
cos
θ
1
-
sin
θ