wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that : [csc(90oθ)sin(90oθ)][cscθsinθ][tanθ+cotθ]=1

Open in App
Solution

[csc(90°θ)sin(90°θ)][cscθsinθ][tanθ+cotθ]=1
L.H.S=[csc(90°θ)sin(90°θ)][cscθsinθ][tanθ+cotθ]
=(secθcosθ)(cscθsinθ)(tanθ+cotθ)
=(1cos2θcosθ)(1sin2θsinθ)(tanθ+cotθ)
=sin2θcosθ.cos2θsinθ(tanθ+cotθ)
=sinθ.cosθ(sinθcosθ+cosθsinθ)
=sinθ.cosθ(sin2θ+cos2θsinθ.cosθ)
=sin2θ+cos2θ
=1
L.H.S=R.H.S
Hence, the answer is proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon