Consider the given equation.
(secA−cscA)(1+tanA+cotA)=tanAsecA−cotAcscA
Consider the LHS.
=secA+tanAsecA+secAcotA−cscA−cscAtanA−cscAcotA
=secA+cscAsec2A+cscA−cscA−secA−csc2AcosA
=cscAcos2A−cosAsin2A
=(cscAcosA)secA−(cosAsinA)cscA
=cscAsec2A−cotAcscA
Therefore,
LHS=RHS