(sinA+cosecA)2+(cosA+secA)2=7+tan2A+cot2A
Taking LHS
=(sinA+cosecA)2+(cosA+secA)2
=sin2A+cosec2A+2+cos2A+sec2A+2
[∵2sinA⋅cosecA=2 and 2cosA⋅secA=2]
=sin2A+cos2A+1/sin2A+1/cos2A+4
=1/sin2A+1/cos2A+5 [∵sin2A+cos2A=1]
=(sin2A+cos2A+5sin2Acos2A)/sin2A⋅cos2A
=(1+5sin2A⋅cos2A)/sin2A⋅cos2A
=(sec2A⋅cosec2A)+5 ………..(1)
Taking RHS
=tan2A+cot2A+7
=sin2Acos2A+cos2Asin2A+7
=(sin2A+cos2A)2−2sin2A⋅cos2Asin2A⋅cos2A+7
=(cosec2A.sec2A)−2+7
=(cosec2A⋅sec2A)+5 ……………….(2)
∴ LHS=RHS
Hence proved.