wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (sinA+cosecA)2+(cosA+secA)2=7+tan2A+cot2A

Open in App
Solution

(sinA+cosecA)2+(cosA+secA)2=7+tan2A+cot2A

Taking LHS

=(sinA+cosecA)2+(cosA+secA)2

=sin2A+cosec2A+2+cos2A+sec2A+2

[2sinAcosecA=2 and 2cosAsecA=2]

=sin2A+cos2A+1/sin2A+1/cos2A+4

=1/sin2A+1/cos2A+5 [sin2A+cos2A=1]

=(sin2A+cos2A+5sin2Acos2A)/sin2Acos2A

=(1+5sin2Acos2A)/sin2Acos2A

=(sec2Acosec2A)+5 ………..(1)

Taking RHS

=tan2A+cot2A+7

=sin2Acos2A+cos2Asin2A+7

=(sin2A+cos2A)22sin2Acos2Asin2Acos2A+7

=(cosec2A.sec2A)2+7

=(cosec2Asec2A)+5 ……………….(2)

LHS=RHS

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon