Simplify:log(x+y3)=12logx+log√y
Giventhat,
log(x+y3)=12logx+log√y
log(x+y3)=log√x+log√y [From the property of log]
log(x+y3)=log(√x×√y) [From the property of log]
(x+y3)=(√x×√y)
x+y=3×√xy
x2+y2+2xy=9xy
x2+y2−7xy=0
Hence, this is the answer.
If x^2+y^2=25xy then prove that 2log(x+y)=3log3+log x+log y