1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Parametric Differentiation
Prove that: ...
Question
Prove that:
s
e
c
6
θ
=
t
a
n
6
θ
+
3
t
a
n
2
θ
s
e
c
2
θ
+
1
Open in App
Solution
We have,
sec
6
θ
=
(
sec
2
θ
)
3
=
(
1
+
tan
2
θ
)
3
=
(
1
)
3
+
(
tan
2
θ
)
3
+
3
×
1
×
tan
2
θ
(
1
+
tan
2
θ
)
=
1
+
tan
6
θ
+
3
tan
2
θ
sec
2
θ
Suggest Corrections
1
Similar questions
Q.
Prove that :
sec
6
θ
=
tan
6
θ
+
3
tan
2
θ
sec
2
θ
+
1
Q.
Prove that :
tan
8
θ
−
tan
6
θ
−
tan
2
θ
=
tan
8
θ
.
tan
6
θ
.
tan
2
θ
.
Q.
Prove
tan
6
θ
+
3
tan
4
θ
+
3
tan
2
=
sec
6
θ
−
1
Q.
Prove the following trigonometric identities.
sec
6
θ = tan
6
θ + 3 tan
2
θ sec
2
θ + 1