1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Complementary Trigonometric Ratios
Prove that: θ...
Question
Prove that:
secθ
+
tanθ
-
1
tanθ
-
secθ
+
1
=
cosθ
1
-
sinθ
Or, Evaluate:
secθ
cosec
(
90
°
-
θ
)
-
tanθ
cot
(
90
°
-
θ
)
+
sin
2
55
°
+
sin
2
35
°
tan
10
°
tan
20
°
tan
60
°
tan
70
°
tan
80
°
Open in App
Solution
LHS
=
secθ
+
tanθ
-
1
tanθ
-
secθ
+
1
=
secθ
+
tanθ
-
sec
2
θ
-
tan
2
θ
tanθ
-
secθ
+
1
[Since, 1 = sec
2
θ - tan
2
θ]
=
secθ
+
tanθ
1
-
secθ
-
tanθ
tanθ
-
secθ
+
1
=
secθ
+
tanθ
tanθ
-
secθ
+
1
tanθ
-
secθ
+
1
=
secθ
+
tanθ
=
1
cosθ
+
sinθ
cosθ
=
1
+
sinθ
cosθ
×
1
-
sinθ
1
-
sinθ
=
1
-
sin
2
θ
cosθ
1
-
sinθ
=
cos
2
θ
cosθ
1
-
sinθ
=
cosθ
1
-
sinθ
RHS
=
cosθ
1
-
sinθ
Hence, LHS = RHS
OR
secθcosec
90
°
-
θ
-
tanθcot
90
°
-
θ
+
sin
2
55
°
+
sin
2
35
°
tan
10
°
tan
20
°
tan
60
°
tan
70
°
tan
80
°
=
sec
2
θ
-
tan
2
θ
+
sin
2
90
°
-
35
°
+
sin
2
35
°
tan
10
°
tan
20
°
tan
60
°
tan
90
°
-
20
°
tan
90
°
-
10
°
=
1
+
cos
2
35
°
+
sin
2
35
°
tan
10
°
tan
20
°
tan
60
°
×
cot
20
°
×
cot
10
°
[Since, sec
2
θ - tan
2
θ = 1]
=
1
+
1
tan
10
°
tan
20
°
×
3
×
1
tan
20
°
×
1
tan
10
°
[Since, cos
2
θ + sin
2
θ = 1]
=
2
3
Suggest Corrections
0
Similar questions
Q.
Evaluate:
sec
θ
cosec
90
°
-
θ
-
tan
θ
cot
90
°
-
θ
+
sin
2
55
°
+
sin
2
35
°
tan
10
°
tan
20
°
tan
60
°
tan
70
°
tan
80
°