wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: secθ+tanθ-1tanθ-secθ+1=cosθ1-sinθ
Or, Evaluate: secθ cosec(90°-θ)-tanθ cot(90°-θ)+sin255°+sin235°tan10° tan20° tan60° tan70° tan80°

Open in App
Solution

LHS=secθ+tanθ-1tanθ-secθ+1
=secθ+tanθ-sec2θ-tan2θtanθ-secθ+1 [Since, 1 = sec2θ - tan2θ]
=secθ+tanθ1-secθ-tanθtanθ-secθ+1
=secθ+tanθtanθ-secθ+1tanθ-secθ+1=secθ+tanθ
=1cosθ+sinθcosθ=1+sinθcosθ×1-sinθ1-sinθ
=1-sin2θcosθ1-sinθ=cos2θcosθ1-sinθ=cosθ1-sinθ

RHS=cosθ1-sinθ
Hence, LHS = RHS

OR

secθcosec90°-θ-tanθcot90°-θ+sin255°+sin235°tan10°tan20°tan60°tan70°tan80°

=sec2θ-tan2θ+sin290°-35°+sin235°tan10°tan20°tan60°tan90°-20°tan90°-10°

=1+cos235°+sin235°tan10°tan20°tan60°×cot20°×cot10° [Since, sec2θ - tan2θ = 1]

=1+1tan10°tan20°×3×1tan20°×1tan10° [Since, cos2θ + sin2θ = 1]
=23

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Complementary Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon