Prove that :sin2x+2sin4x+sin6x=4cos2xsin4x
As we have sin2x+2sin4x+sin6x=4cos2xsin4x
LHS=sin2x+2sin4x+sin6x=(sin6x+sin2x)+2sin4x…(i)WeknowsinA+sinB=2sin(A+B)2cos(A-B)2(i)becomes2sin4xcos2x+2sin4x=2sin4x(cos2x+1)=2sin4x(2cos2x–1+1)=2sin4x(2cos2x)=4cos2xsin4x=RHS
Hence proved.
Evaluate :cos48°-sin42°