Prove that:
(sin 3x + sin x) sin x + (cos 3x-cos x) cos x = 0
We have L.H.S
= (sin 3x+ sin x) sin x + (cos 3x - cos x) cosx
=[2sin(3x+x2)cos(3x−x2)] sin x
+ [−2sin(3x+x2)sin(3x−x2)] cos x
= [2 sin 2x cosx] sin x + [-2 sin 2x sin x] cosx
= 2 sin 2x cosx sinx - 2 sin2x cos x sin x = 0
= R.H.S.