wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that sin4π8+sin43π8+sin45π8+sin47π8=32

Open in App
Solution

sin4π8+sin43π8+sin45π8+sin47π8

=sin4π8+sin4(ππ8)+sin43π8+sin4(π3π8)

=2sin4π8+2sin43π8......(sin(πθ)=sinθ)

=2sin4π8+2cos4π8.....(sin(π2θ)=cosθ)

=2[(sin2π8+cos2π8)22sin2π8cos2π8]

=2⎢ ⎢ ⎢1⎜ ⎜2sinπ8cosπ82⎟ ⎟2⎥ ⎥ ⎥

=2⎢ ⎢1⎜ ⎜sin2π42⎟ ⎟⎥ ⎥

=2[112×2]=2=12

=32=RHS

Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon