2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Relation between Trigonometric Ratios
Prove that si...
Question
Prove that
sinθ
-
cosθ
+
1
sinθ
+
cosθ
-
1
=
1
(
secθ
-
tanθ
)
.
Or, evaluate:
secθ
cosec
(
90
°
-
θ
)
-
tan
θ
cot
(
90
°
-
θ
)
+
sin
2
65
°
+
sin
2
25
°
tan
10
°
tan
20
°
tan
60
°
tan
70
°
tan
80
°
Open in App
Solution
LHS
=
sinθ
-
cosθ
+
1
sinθ
+
cosθ
-
1
=
sinθ
cosθ
-
1
+
1
cosθ
sinθ
cosθ
+
1
-
1
cosθ
[On dividing numerator and denominator by cos θ]
=
tanθ
-
1
+
secθ
tanθ
+
1
-
secθ
=
secθ
+
tanθ
-
1
tanθ
-
secθ
+
1
=
secθ
+
tanθ
-
sec
2
θ
-
tan
2
θ
tanθ
-
secθ
+
1
[Since 1 = sec
2
θ - tan
2
θ]
=
secθ
+
tanθ
1
-
secθ
-
tanθ
tanθ
-
secθ
+
1
=
secθ
+
tanθ
tanθ
-
secθ
+
1
tanθ
-
secθ
+
1
=
secθ
+
tanθ
RHS
=
1
secθ
-
tanθ
=
1
secθ
-
tanθ
×
secθ
+
tanθ
secθ
+
tanθ
=
secθ
+
tanθ
sec
2
θ
-
tan
2
θ
=
secθ
+
tanθ
[Since sec
2
θ - tan
2
θ = 1]
Hence, LHS = RHS
OR
secθcosec
90
°
-
θ
-
tanθcot
90
°
-
θ
+
sin
2
65
°
+
sin
2
25
°
tan
10
°
tan
20
°
tan
60
°
tan
70
°
tan
80
°
=
sec
2
θ
-
tan
2
θ
+
sin
2
90
°
-
25
°
+
sin
2
25
°
tan
10
°
tan
20
°
tan
60
°
tan
90
°
-
20
°
tan
90
°
-
10
°
=
1
+
cos
2
25
°
+
sin
2
25
°
tan
10
°
tan
20
°
tan
60
°
×
cot
20
°
×
cot
10
°
[Since sec
2
θ - tan
2
θ = 1]
=
1
+
1
tan
10
°
tan
20
°
×
3
×
1
tan
20
°
×
1
tan
10
°
[Since cos
2
θ + sin
2
θ = 1]
=
2
3
Suggest Corrections
0
Similar questions
Q.
Evaluate:
sec
θ
cosec
90
°
-
θ
-
tan
θ
cot
90
°
-
θ
+
sin
2
55
°
+
sin
2
35
°
tan
10
°
tan
20
°
tan
60
°
tan
70
°
tan
80
°