wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that sinθ-cosθ+1sinθ+cosθ-1=1(secθ-tanθ).
Or, evaluate: secθ cosec(90°-θ)-tan θ cot(90°-θ)+sin265°+sin225°tan10° tan20° tan60° tan70° tan80°

Open in App
Solution

LHS =sinθ-cosθ+1sinθ+cosθ-1

=sinθcosθ-1+1cosθsinθcosθ+1-1cosθ [On dividing numerator and denominator by cos θ]
=tanθ-1+secθtanθ+1-secθ=secθ+tanθ-1tanθ-secθ+1
=secθ+tanθ-sec2θ-tan2θtanθ-secθ+1 [Since 1 = sec2θ - tan2θ]
=secθ+tanθ1-secθ-tanθtanθ-secθ+1
=secθ+tanθtanθ-secθ+1tanθ-secθ+1=secθ+tanθ

RHS=1secθ-tanθ
=1secθ-tanθ×secθ+tanθsecθ+tanθ=secθ+tanθsec2θ-tan2θ
=secθ+tanθ [Since sec2θ - tan2θ = 1]
Hence, LHS = RHS

OR
secθcosec90°-θ-tanθcot90°-θ+sin265°+sin225°tan10°tan20°tan60°tan70°tan80°

=sec2θ-tan2θ+sin290°-25°+sin225°tan10°tan20°tan60°tan90°-20°tan90°-10°

=1+cos225°+sin225°tan10°tan20°tan60°×cot20°×cot10° [Since sec2θ - tan2θ = 1]

=1+1tan10°tan20°×3×1tan20°×1tan10° [Since cos2θ + sin2θ = 1]
=23

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon