1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Parametric Differentiation
Prove that:si...
Question
Prove that:
sin
θ
+
sin
2
θ
1
+
cos
θ
+
cos
2
θ
=
tan
θ
Open in App
Solution
LHS
=
sinθ
+
sin
2
θ
1
+
cosθ
+
cos
2
θ
=
sinθ
+
sin
2
θ
cosθ
+
1
+
cos
2
θ
=
sinθ
+
2
sinθ
cosθ
cosθ
+
2
cos
2
θ
∵
sin
2
θ
=
2
sinθcosθ
and
2
cos
2
θ
=
1
+
cos
2
θ
=
sinθ
1
+
2
cosθ
cosθ
1
+
2
cosθ
=
tanθ
=
RHS
Hence
proved
.
Suggest Corrections
0
Similar questions
Q.
Prove the following trigonometric identities.
1
+
sec
θ
sec
θ
=
sin
2
θ
1
-
cos
θ