wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that :
(sinθ+secθ)2+(cosθ+cosecθ)2=(1+secθcosecθ)2.

Open in App
Solution

We have,
LHS = (sinθ+secθ)2+(cosθ+cosecθ)2

LHS=(sinθ+1cosθ)2+(cosθ+1sinθ)2

LHS=sin2θ+1cos2θ+2sinθcosθ+cos2θ+1sin2θ+2cosθsinθ

LHS=(sin2θ+cos2θ)+(1cos2θ+1sin2θ)+2(sin2θ+cos2θ)sinθcosθ

LHS=1+1sin2θcos2θ+2sinθcosθ

LHS=(1+1sinθcosθ)2=(1+secθcosecθ)2=RHS.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon