wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that sin x+sin 3x+......+sin(2n1)x=sin2nxsin x.

Open in App
Solution

Let P(n) : sin x+sin 3x+....+sin(2n1)x=sin2nxsin x

For n = 1

sin x=sin2xsin x

sin x=sin x

P(n) is true for n = 1

Let P(n) is true for n = k, so

sin x+sin 3x+......+sin(2k1)x=sin2kxsin x .......(1)

We have to show that

sin x+sin 3x+....+sin (2k1)x+sin(2k+1)x=sin2(k+1)xsin x

Now,

{sin x+sin 3x+....+sin(2k1)x}+sin(2k+1)x

=sin2kxsin x+sin(2k+1)x1

Using equation (i),

=sin2kx+sin(2k+1)sin xsin x

=2sin2kx+cos[(2k+1)xx]cos[2kx+x+x]2sin x

=2sin2kx+cos2kxcos(2kx+2x)2sinx

=1cos 2x(k+1)2sin x

=sin2x(k+1)sin x

P(n) is true for n = k + 1

P(n) is true for all n ϵ N by PMI.


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon