Prove that sin x+sin 3x+......+sin(2n−1)x=sin2nxsin x.
Let P(n) : sin x+sin 3x+....+sin(2n−1)x=sin2nxsin x
For n = 1
sin x=sin2xsin x
sin x=sin x
⇒ P(n) is true for n = 1
Let P(n) is true for n = k, so
sin x+sin 3x+......+sin(2k−1)x=sin2kxsin x .......(1)
We have to show that
sin x+sin 3x+....+sin (2k−1)x+sin(2k+1)x=sin2(k+1)xsin x
Now,
{sin x+sin 3x+....+sin(2k−1)x}+sin(2k+1)x
=sin2kxsin x+sin(2k+1)x1
Using equation (i),
=sin2kx+sin(2k+1)sin xsin x
=2sin2kx+cos[(2k+1)x−x]−cos[2kx+x+x]2sin x
=2sin2kx+cos2kx−cos(2kx+2x)2sinx
=1−cos 2x(k+1)2sin x
=sin2x(k+1)sin x
⇒ P(n) is true for n = k + 1
⇒ P(n) is true for all n ϵ N by PMI.