1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Complex Numbers
Prove that ta...
Question
Prove that tan
(
i
l
o
g
e
(
a
−
i
b
a
+
i
b
)
)
=
2
a
b
a
2
−
b
2
(where
a
,
b
∈
R
+
).
Open in App
Solution
Let
a
+
i
b
=
r
e
i
θ
⟹
a
−
i
b
=
r
e
−
i
θ
⟹
a
−
i
b
a
+
i
b
=
e
−
2
i
θ
⟹
log
e
(
a
−
i
b
a
+
i
b
)
=
−
2
i
θ
⟹
tan
(
i
log
e
(
a
−
i
b
a
+
i
b
)
)
=
tan
2
θ
=
2
tan
θ
1
−
tan
2
θ
=
2
b
a
1
−
b
2
a
2
=
2
a
b
a
2
−
b
2
Suggest Corrections
0
Similar questions
Q.
c
o
s
(
i
l
o
g
a
−
i
b
a
+
i
b
)
is equal to
Q.
The expression
t
a
n
(
i
l
o
g
(
a
−
i
b
a
+
i
b
)
)
reduces to: