Prove that:
(cos x−cos y)2+(sin x−sin y)2=4sin2 x−y2
We have L.H.S.
= (cos x−cos y)2+(sin x−sin y)2
= [−2sin(x+y2)sin(x−y2)]2 + [2cos(x+y2)sin(x−y2)]2
= 4 sin2(x+y2)sin2(x−y2)+4cos2(x+y2)sin2(x−y2)
= 4 sin2(x−y2)[sin2(x+y2)+cos2(x+y2)]
= 4 sin2(x−y2) = R.H.S.