Case I
In △APO,OP=OA(radius)
∠OPA=∠OAP(angles opposite to equal sides are equal) ....(1)
In △AQO,OQ=OA(radius)
∠OQA=∠OAQ(angles opposite to equal sides are equal) ....(2)
Also, by exterior angle property,Exterior angle is sum of interior opposite angles
∠BOP=∠OPA+∠OAP
∠BOP=∠OAP+∠OAP
∠BOP=2∠OAP ....(3)
Also, by exterior angle property,Exterior angle is sum of interior opposite angles
∠BOQ=∠OQA+∠OAQ
∠BOQ=∠OAQ+∠OAQ
∠BOQ=2∠OAQ ....(4)
Adding (3) and (4) we get
∠BOP+∠BOQ=2(∠OAP+∠OAQ)
Hence ∠POQ=2∠PAQ
Hence proved.
Case II
In △APO,OP=OA(radius)
⇒∠OPA=∠OAP(Angles opposite to equal angles are equal) .....(1)
In △AQO,OQ=OA(radius)
⇒∠OQA=∠OAQ(Angles opposite to equal angles are equal) .....(2)
Also, by exterior angle property,Exterior angle is sum of interior opposite angles
∠BOP=∠OPA+∠OAP
∠BOP=∠OAP+∠OAP
∠BOP=2∠OAP ....(3)
Also, by exterior angle property,Exterior angle is sum of interior opposite angles
∠BOQ=∠OQA+∠OAQ
∠BOQ=∠OAQ+∠OAQ
∠BOQ=2∠OAQ ....(4)
Adding (3) and (4) we get
∠BOP+∠BOQ=2(∠OAP+∠OAQ)
Hence reflex angle ∠POQ=2∠PAQ
360∘−∠POQ=2∠PAQ
Hence proved.