The correct option is C None of these
Let P(z) be any point on the line AB.
arg(z−z1)−arg(z−z2)=0 or π
according as P is outside or inside AB.
or arg (z−z1)(z−z2)=0 orπ
or tan−1XY=0 or π or XY=0 ∴y=0
Hence from (1) we conclude that
z−z1z−z2= purely real
∴z−z1z−z2=(¯z−z1z−z2)=¯z−¯z1¯z−¯z2
or (z−z1)(¯z−¯z2)=(z−z2)(¯z−¯z1)
or z¯z−¯zz1−z¯z2+z1¯z2=z¯z−¯zz2−z¯z1+z2¯z1
or z(¯z1−¯z2)+¯z(z2−z1)+z1¯z2−z2¯z1=0
or z¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(z1−z2)−¯z(z1−z2)+(z1¯z2−¯¯¯¯¯¯¯¯¯¯z1¯z2)=0
Now we know that for any complex number z=a+ib,z−¯z2i Im z=2ib= p.i
Let z1−z2=β, then ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1−z2=¯β
Hence from (2), z¯β−¯zβ+ic=0
Now 1i=−i,¯i=−i
Divide by i
−z i ¯β+¯zi β+c=0.
If i β=p¯¯¯¯¯iβ=¯p
or ¯i¯β=¯p or −i¯β=¯p
∴z¯p+p¯z+c=0.