wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that the expansion of (1x3)n may be put into the form (1x)3n+3nx(1x)3n2+3n(3n3)1.2x2(1x)3n4+...

Open in App
Solution

we know that
1x3=(1x)3+3x(1x)

(1x3)n=[(1x)3+3x(1x)]n

taking (1x)3 common in RHS

=(1x)3n.[1+3x(1x)2]n

now expand it

=(1x)3n.[1+3nx(1x)2+(n)(n1).9x2.(1x)41.2.........]

now solving on multiplying with outer term



=(1x)3n+(1x)3n.3nx(1x)2+(1x)3n.(3n)(3n3).x2.(1x)41.2.........


=(1x)3n+3nx(1x)3n2+.(3n)(3n3).x2.(1x)3n41.2.........

(1x3)n=(1x)3n+3nx(1x)3n2+.(3n)(3n3).x2.(1x)3n41.2.........

Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
What is Binomial Expansion?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon