Prove that the points z1,z2,z3,z4 taken in order are concyclic if and only if (z3−z1)(z4−z2)(z3−z2)(z4−z1) is purely real.
Open in App
Solution
If ABCD be concyclic then angle subtended by AB both at C and D are same. z2−z3z1−z3=BCACeiθ z2−z4z1−z4=BDADeiθ Dividing, we get (z2−z3z1−z3).(z1−z4z2−z4)=BC.ADAC.BD= real Conversely (z2−z3)(z1−z4)(z1−z3)(z2−z4)=real=k say then z2−z3z1−z3=kz1−z4z2−z4 ∴argz2−z3z1−z3=argz1−z4z2−z4 ∴∠ACB=∠ADB Hence the points are concyclic.A Note: If arg z=θ then arg kz=θ, where k is real.