Given: ΔABC∼ΔPQR
To Prove : A(ΔABC)A(ΔPQR)=AB2PQ2=BC2QR2=AC2PR2
Construction: Draw seg AM ⊥ side BC, and seg PN ⊥ side QR
Proof: ΔABC∼ΔPQR ....... (Given)
∴ABPQ=BCQR=ACPR ....... (c.s.s.t) ...... (1)
and ∠ABC≃∠PQR ....... (c.s.s.t)
i.e., ∠ABM≃∠PQN ...... (2)
In ΔABM and ΔPQN
∠ABM≃=∠PQN [From (2)]
∠AMB≃∠PNQ ...... (Both are right angles)
∴ΔAMB∼ΔPNQ ..... (AA test for similarity)
∴AMPN=MBNQ=ABPQ ...... (c.s.s.t) ..... (3)
∴AMPN=ABPQ=BCQR [From (1) and (3)] ..... (4)
Now, A(ΔABC)A(ΔPQR)=BC×AMQR×PN
=BCQR×AMPN
=BCQR×BCQR [From (4)]
∴A(ΔABC)A(ΔPQR)=BC2QR2 ........ (5)
Similarly, we can prove that
A(ΔABC)A(ΔPQR)=AB2PQ2 and
A(ΔABC)A(ΔPQR)=AC2PR2 ...... (6)
A(ΔABC)A(ΔPQR)=BC2QR2=AB2PQ2=AC2PR2 From (5) and (6) [henceproved]