15x−18y+1=0.......(i)12x+10y−3=0..........(ii)12x=3−10yx=3−10y12
Substituting x in (i), we get
15(3−10y12)−18y+1=015−50y−72y+44=019−122y=0y=19122x=3−10y12=3−10(19122)12x=366−190(122)12=22183
So the point of intersection is P(22183,19122)
6x+66y−11=0......(iii)
Substituting P in (iii)
6×22183+66×19122−11=04461+62761−11=067161−11=011−11=00=0
P also satisfies the equation of third line, so they all meet in a point .
Equation of angle bisector between 15x−18y+1=0 and 12x+10y−3=0 is
15x−18y+1√(15)2+(18)2=±12x+10y−3√(12)2+(10)215x−18y+1√549=±12x+10y−3√24415x−18y+13√61=±12x+10y−32√612(15x−18y+1)=±3(12x+10y−3)30x−36y+2=±(36x+30y−3)⇒30x−36y+2=36x+30y−96x+66y−11=0
which is same as (ii)
Hence, third line bisects the angle between the other two.