The vector ¯¯¯¯A,¯¯¯¯B,¯¯¯¯C are linearly independent if [¯¯¯¯A,¯¯¯¯B,¯¯¯¯C]≠0
here (ˆi−3ˆj+2ˆk)⋅[(2ˆi−4ˆj−4ˆk)×(3ˆi+2ˆj−ˆk)]
=(ˆi−3ˆj+2ˆk)⋅(12ˆi−10ˆj+16ˆk)
=12+30+32≠0
∴ The given vectors are linearly independent