The given function in θ is
f(θ)=4sin θ2+cos θ−θ
Now differentiating the function w.r.t. θ,
f′(θ)=(2+cos θ)4 cos θ−4 sin θ(−sin θ)(2+cos θ)2−1
⇒f′(θ)=8 cos θ+4 cos2 θ+4 sin2 θ(2+cos θ)2−1
⇒f′(θ)=8 cos θ+4(sin2 θ+cos2 θ)−(2+cos θ)2(2+cos θ)2
⇒f′(θ)=8 cos θ+4−4−cos2 θ−4 cos θ(2+cos θ)2
⇒f′(θ)=4 cos θ−cos2 θ(2+cos θ)2
⇒f′(θ)=cos θ(4−cos θ)(2+cos θ)2
⇒ Here, f(θ) is increasing when f′(θ)>0
i.e., cos θ(4−cos θ)(2+cos θ)2>0
⇒cos θ>0[∵4−cos θ(2+cos θ)2>0 ∀ θ ∈R]
⇒θ ∈ [0,π2]