wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that y=4 sin θ2+cos θθ is an increasing function of θ on [0,π2].

Open in App
Solution

The given function in θ is

f(θ)=4sin θ2+cos θθ
Now differentiating the function w.r.t. θ,

f(θ)=(2+cos θ)4 cos θ4 sin θ(sin θ)(2+cos θ)21

f(θ)=8 cos θ+4 cos2 θ+4 sin2 θ(2+cos θ)21

f(θ)=8 cos θ+4(sin2 θ+cos2 θ)(2+cos θ)2(2+cos θ)2

f(θ)=8 cos θ+44cos2 θ4 cos θ(2+cos θ)2

f(θ)=4 cos θcos2 θ(2+cos θ)2

f(θ)=cos θ(4cos θ)(2+cos θ)2

Here, f(θ) is increasing when f(θ)>0

i.e., cos θ(4cos θ)(2+cos θ)2>0
cos θ>0[4cos θ(2+cos θ)2>0 θ R]
θ [0,π2]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon