Prove the following: 1+cot2α1+cosecα=cosecα
Proof of trigonometric identity:
1+cot2α1+cosecα=cosecα
Taking LCM
LHS=1+cot2α1+cosecα=1+cos2αsin2α1+1sinα[∵cotα=cosαsinα]=1+cos2αsin2α·sinα1+sinα=sin2α(1+sinα)+sinα·cos2αsin2α(1+sinα)=sin2α+sin3α+sinα·cos2αsin2α(1+sinα)=sin2α+sinα(sin2α+cos2α)sin2α(1+sinα)=sinα(1+sinα)sin2α(1+sinα)∵sin2α+cos2α=1=1sinα=cosecα∵1sinα=cosecα=RHS
Hence, it is proved that 1+cot2α1+cosecα=cosecα