wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following.

(1) secθ (1 – sinθ) (secθ + tanθ) = 1

(2) (secθ + tanθ) (1 – sinθ) = cosθ

(3) sec2θ + cosec2θ = sec2θ × cosec2θ

(4) cot2θ – tan2θ = cosec2θ – sec2θ

(5) tan4θ + tan2θ = sec4θ – sec2θ

(6) 11-sinθ+11+sinθ=2 sec2θ

(7) sec6x – tan6x = 1 + 3sec2x × tan2x

(8) tanθsecθ+1=secθ-1tanθ

(9) tan3θ-1tanθ-1=sec2θ+tanθ

(10) sinθ-cosθ+1sinθ+cosθ-1=1sinθ-tanθ

Open in App
Solution


(1)
secθ1-sinθsecθ+tanθ=secθ-secθsinθsecθ+tanθ=secθ-sinθcosθsecθ+tanθ=secθ-tanθsecθ+tanθ=sec2θ-tan2θ=1 1+tan2θ=sec2θ
(2)
secθ+tanθ1-sinθ=1cosθ+sinθcosθ1-sinθ=1+sinθcosθ1-sinθ=1-sin2θcosθ=cos2θcosθ sin2θ+cos2θ=1=cosθ
(3)
sec2θ+cosec2θ=1cos2θ+1sin2θ=sin2θ+cos2θcos2θsin2θ=1cos2θsin2θ=1cos2θ×1sin2θ=sec2θcosec2θ
(4)
cot2θ-tan2θ=cosec2θ-1-sec2θ-1 1+tan2θ=sec2θ & 1+cot2θ=cosec2θ=cosec2θ-1-sec2θ+1=cosec2θ-sec2θ
(5)
tan4θ+tan2θ=sec2θ-12+sec2θ-1 1+tan2θ=sec2θ=sec4θ-2sec2θ+1+sec2θ-1 a-b2=a2-2ab+b2=sec4θ-sec2θ
(6)
11-sinθ+11+sinθ=1+sinθ+1-sinθ1-sinθ1+sinθ=21-sin2θ a-ba+b=a2-b2=2cos2θ sin2θ+cos2θ=1=2sec2θ
(7)
We have,

sec2x-tan2x=1

Cubing on both sides, we get

sec2x-tan2x3=13sec2x3-tan2x3-3×sec2x×tan2x×sec2x-tan2x=1 a-b3=a3-b3-3aba-bsec6x-tan6x-3sec2xtan2x=1sec6x-tan6x=1+3sec2xtan2x
(8)
tanθsecθ+1=tanθsecθ+1×secθ-1secθ-1=tanθsecθ-1sec2θ-1=tanθsecθ-1tan2θ 1+tan2θ=sec2θ=secθ-1tanθ
(9)
tan3θ-1tanθ-1=tanθ-1tan2θ+tanθ×1+1tanθ-1 a3-b3=a-ba2+ab+b2=tan2θ+tanθ+1=sec2θ+tanθ 1+tan2θ=sec2θ
(10)
sinθ-cosθ+1sinθ+cosθ-1
=sinθ-cosθ+1cosθsinθ+cosθ-1cosθ (Dividing numerator and denominator by cosθ)
=sinθcosθ-cosθcosθ+1cosθsinθcosθ+cosθcosθ-1cosθ
=tanθ-1+secθtanθ+1-secθ=tanθ-1+secθtanθ+sec2θ-tan2θ-secθ 1+tan2θ=sec2θ=tanθ-1+secθsecθ-tanθsecθ+tanθ-secθ-tanθ a2-b2=a-ba+b =tanθ-1+secθsecθ-tanθsecθ+tanθ-1=1secθ-tanθ

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon