2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Implicit Differentiation
Prove the fol...
Question
Prove the following.
(1) secθ (1 – sinθ) (secθ + tanθ) = 1
(2) (secθ + tanθ) (1 – sinθ) = cosθ
(3) sec
2
θ + cosec
2
θ = sec
2
θ × cosec
2
θ
(4) cot
2
θ – tan
2
θ = cosec
2
θ – sec
2
θ
(5) tan
4
θ + tan
2
θ = sec
4
θ – sec
2
θ
(6)
1
1
-
sin
θ
+
1
1
+
sin
θ
=
2
sec
2
θ
(7) sec
6
x
– tan
6
x
= 1 + 3sec
2
x
× tan
2
x
(8)
tan
θ
s
e
c
θ
+
1
=
s
e
c
θ
-
1
tan
θ
(9)
tan
3
θ
-
1
tan
θ
-
1
=
sec
2
θ
+
tan
θ
(10)
sin
θ
-
cos
θ
+
1
sin
θ
+
cos
θ
-
1
=
1
sin
θ
-
tan
θ
Open in App
Solution
(1)
sec
θ
1
-
sin
θ
sec
θ
+
tan
θ
=
sec
θ
-
sec
θ
sin
θ
sec
θ
+
tan
θ
=
sec
θ
-
sin
θ
cos
θ
sec
θ
+
tan
θ
=
sec
θ
-
tan
θ
sec
θ
+
tan
θ
=
sec
2
θ
-
tan
2
θ
=
1
1
+
tan
2
θ
=
sec
2
θ
(2)
sec
θ
+
tan
θ
1
-
sin
θ
=
1
cos
θ
+
sin
θ
cos
θ
1
-
sin
θ
=
1
+
sin
θ
cos
θ
1
-
sin
θ
=
1
-
sin
2
θ
cos
θ
=
cos
2
θ
cos
θ
sin
2
θ
+
cos
2
θ
=
1
=
cos
θ
(3)
sec
2
θ
+
cosec
2
θ
=
1
cos
2
θ
+
1
sin
2
θ
=
sin
2
θ
+
cos
2
θ
cos
2
θ
sin
2
θ
=
1
cos
2
θ
sin
2
θ
=
1
cos
2
θ
×
1
sin
2
θ
=
sec
2
θ
cosec
2
θ
(4)
cot
2
θ
-
tan
2
θ
=
cosec
2
θ
-
1
-
sec
2
θ
-
1
1
+
tan
2
θ
=
sec
2
θ
&
1
+
cot
2
θ
=
cosec
2
θ
=
cosec
2
θ
-
1
-
sec
2
θ
+
1
=
cosec
2
θ
-
sec
2
θ
(5)
tan
4
θ
+
tan
2
θ
=
sec
2
θ
-
1
2
+
sec
2
θ
-
1
1
+
tan
2
θ
=
sec
2
θ
=
sec
4
θ
-
2
sec
2
θ
+
1
+
sec
2
θ
-
1
a
-
b
2
=
a
2
-
2
a
b
+
b
2
=
sec
4
θ
-
sec
2
θ
(6)
1
1
-
sin
θ
+
1
1
+
sin
θ
=
1
+
sin
θ
+
1
-
sin
θ
1
-
sin
θ
1
+
sin
θ
=
2
1
-
sin
2
θ
a
-
b
a
+
b
=
a
2
-
b
2
=
2
cos
2
θ
sin
2
θ
+
cos
2
θ
=
1
=
2
sec
2
θ
(7)
We have,
sec
2
x
-
tan
2
x
=
1
Cubing on both sides, we get
sec
2
x
-
tan
2
x
3
=
1
3
⇒
sec
2
x
3
-
tan
2
x
3
-
3
×
sec
2
x
×
tan
2
x
×
sec
2
x
-
tan
2
x
=
1
a
-
b
3
=
a
3
-
b
3
-
3
a
b
a
-
b
⇒
sec
6
x
-
tan
6
x
-
3
sec
2
x
tan
2
x
=
1
⇒
sec
6
x
-
tan
6
x
=
1
+
3
sec
2
x
tan
2
x
(8)
tan
θ
sec
θ
+
1
=
tan
θ
sec
θ
+
1
×
sec
θ
-
1
sec
θ
-
1
=
tan
θ
sec
θ
-
1
sec
2
θ
-
1
=
tan
θ
sec
θ
-
1
tan
2
θ
1
+
tan
2
θ
=
sec
2
θ
=
sec
θ
-
1
tan
θ
(9)
tan
3
θ
-
1
tan
θ
-
1
=
tan
θ
-
1
tan
2
θ
+
tan
θ
×
1
+
1
tan
θ
-
1
a
3
-
b
3
=
a
-
b
a
2
+
a
b
+
b
2
=
tan
2
θ
+
tan
θ
+
1
=
sec
2
θ
+
tan
θ
1
+
tan
2
θ
=
sec
2
θ
(10)
sin
θ
-
cos
θ
+
1
sin
θ
+
cos
θ
-
1
=
sin
θ
-
cos
θ
+
1
cos
θ
sin
θ
+
cos
θ
-
1
cos
θ
(Dividing numerator and denominator by cosθ)
=
sin
θ
cos
θ
-
cos
θ
cos
θ
+
1
cos
θ
sin
θ
cos
θ
+
cos
θ
cos
θ
-
1
cos
θ
=
tan
θ
-
1
+
sec
θ
tan
θ
+
1
-
sec
θ
=
tan
θ
-
1
+
sec
θ
tan
θ
+
sec
2
θ
-
tan
2
θ
-
sec
θ
1
+
tan
2
θ
=
sec
2
θ
=
tan
θ
-
1
+
sec
θ
sec
θ
-
tan
θ
sec
θ
+
tan
θ
-
sec
θ
-
tan
θ
a
2
-
b
2
=
a
-
b
a
+
b
=
tan
θ
-
1
+
sec
θ
sec
θ
-
tan
θ
sec
θ
+
tan
θ
-
1
=
1
sec
θ
-
tan
θ
Suggest Corrections
1
Similar questions
Q.
Prove that
sin
θ
−
cos
θ
+
1
sin
θ
+
cos
θ
−
1
=
1
sec
θ
−
tan
θ
, using the identity
sec
2
θ
=
1
+
tan
2
θ
.
Q.
If
θ
=
178
°
, then the value of
sin
θ
√
1
+
cot
2
θ
+
cos
θ
√
1
+
tan
2
θ
is
Q.
IS LHS=RHS?
sin
θ
+
cos
θ
sin
θ
−
cos
θ
+
sin
θ
−
cos
θ
sin
θ
+
cos
θ
=
1
sin
2
θ
−
cos
2
θ
=
sec
2
θ
tan
2
θ
−
1
Say true or false.
Q.
Prove that
sin
(
90
∘
−
θ
)
1
+
sin
θ
+
cos
θ
1
−
cos
(
90
∘
−
θ
)
=
2
sec
θ
Q.
Prove the following trigonometric identities:
1
+
s
i
n
θ
c
o
s
θ
+
c
o
s
θ
1
+
s
i
n
θ
=
2
s
e
c
θ
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Implicit Differentiation
MATHEMATICS
Watch in App
Explore more
Implicit Differentiation
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app