Multiply C1,C2 and C3 by a,b,c respectively and divide by abc
Δ=1abc∣∣
∣
∣∣a2b2−bcc2+cba2+acb2c2−aca2−aba2+abc2∣∣
∣
∣∣
Apply C1+C2+C3 and take out a2+b2+c2
Δ=a2+b2+c2abc∣∣
∣
∣∣1b2−bcc2+cb1b2c2−ac1b2+abc2∣∣
∣
∣∣
Take b and c common from R2 and R3
=a2+b2+c2abc.bc∣∣
∣∣1b−bc+b1bc−a1b+ac∣∣
∣∣
Apply R2−R1 and R3−R1
Δ=a2+b2+c2a∣∣
∣∣1b−cc+b0b−a−b0a+c−b∣∣
∣∣
=a2+b2+c2a[−bc+(a+c)(a+b)]
=a2+b2+c2a[−bc+a2+ac+ab+bc]
=a2+b2+c2a.a(a+b+c)
=(a+b+c)(a2+b2+c2).