(a)checkp(1)LHS=1RHS=(31−12)=(22)=1LHS=RHS(b)letP(K)betrue,then1+3+32−−−−−−−−−−+3k−1=(3k−12)nowforp(k+1)LHS=1+3+32−−−−−−−+3K−1+3kaGpwith(k+1)terms=(1⋅(3k+1−1)3−1)=(3k+12)RHS=(3k+12)∴LHS=RHSHencep(k+1)istrue,sop(n)isTrueforalln∈NusingPMI
Prove the following by using the principle of mathematical induction for all n ∈ N: