Prove the following:
cot 4x ( sin 5x + sin 3x) = cot x (sin 5x- sin 3x)
We have L.H.S. = cot 4x (sin 5x+ sin 3x)
= cos 4xsin 4x[2sin(5x+3x2)cos(5x−3x2)]
= cos 4xsin 4x[2 sin 4x cos x]
= 2 cos 4x cos x
We have R.H.S = cot x [sin 5x- sin 3x]
= cos xsin x[2 cos(5x+3x2)sin(5x−3x2)]
[∵sin C- sin D = 2 cosC+D2.sinC−D2]
= cos xsin x[2 cos 4x sin x]
= 2 cos 4x cos x
Hence L.H.S. = R.H.S.