wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following identities (1-17)

1-sin θ1+sin θ+1+sin θ1-sin θ=-2cos θ, whereπ2<θ<π

Open in App
Solution

LHS = 1-sin θ1+sin θ+1+sin θ1-sin θ = 1-sin θ1-sin θ1+sin θ1-sin θ+1+sin θ1+sin θ1-sin θ1+sin θ = 1-sin θ1-sin θ1+sin θ1-sin θ+1+sin θ1+sin θ1-sin θ1+sin θ = 1-sin θ21-sin2 θ+1+sin θ21-sin2 θ =1-sin θ2cos2 θ+1+sin θ2cos2 θ =1-sin θcos θ+1+sin θcos θ =1-sin θ+1+sin θcos θ =2cos θ =-2cos θ π2<θ<π and in the second quadrant, cosθ is negative =RHSHence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon