1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Basic Trigonometric Identities
Prove the fol...
Question
Prove the following identities (1-17)
cos
θ
tan
θ
+
2
2
tan
θ
+
1
=
2
sec
θ
+
5
sin
θ
Open in App
Solution
LHS
=
cos
θ
tan
θ
+
2
2
tan
θ
+
1
=
cos
θ
2
tan
2
θ
+
5
tan
θ
+
2
=
cos
θ
2
sin
2
θ
cos
2
θ
+
5
sin
θ
cos
θ
+
2
=
2
sin
2
θ
+
5
sin
θ
cos
θ
+
2
cos
2
θ
cos
θ
=
2
+
5
sin
θ
cos
θ
cos
θ
=
2
s
e
c
θ
+
5
sin
θ
=
RHS
Hence
proved
.
Suggest Corrections
0
Similar questions
Q.
c
o
s
θ
(
t
a
n
θ
+
2
)
(
2
t
a
n
θ
+
1
)
=
2
s
e
c
θ
+
5
s
i
n
θ
Q.
Show that : cos
θ
(tan
θ
+ 2 ) (2 tan
θ
+1 ) = 2 sec
θ
+ 5 sin
θ
Q.
Prove the following identities (1-17)
sec
4
θ
-
sec
2
θ
=
tan
4
θ
+
tan
2
θ
Q.
Prove the following trigonometric identities.
(sec
2
θ − 1) (cosec
2
θ − 1) = 1