wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following identities:

cot2A(sec A1)1+sin A=sec2 A(1sin A1+sec A)

Open in App
Solution

cot²A(secA-1/1+sinA)+sec²A(sinA-1/1+secA)

=cot²A[(secA-1)(1-sinA)/(1+sinA)(1-sinA)]+sec²A[(sinA-1)(secA-1)/(secA+1)(secA-1)]

=cot²A[(secA-secA.sinA-1+sinA)/(1-sin²A)]+sec²A[(sinA.secA-sinA-secA+1)/(sec²A-1)]

=cot²A[(secA-secA.sinA-1+sinA)/cos²A]+sec²A[(sinA.secA-sinA-secA+1)/tan²A]

=(cos²A/sin²A)[(secA-secA.sinA-1+sinA)/cos²A]+[sec²A(sinA.secA-sinA-secA+1)](cos²A/sin²A)

=[(secA-secA.sinA-1+sinA)/sin²A]+[(sinA.secA-sinA-secA+1)/sin²A]

=(secA-secA.sinA-1+sinA+sinA.secA-sinA-secA+1)/sin²A

=0/sin²A

=0

cot²A(secA-1/1+sinA)+sec²A(sinA-1/1+secA)=0

so

cot²A(secA-1/1+sinA)=sec²A(1-sinA/1+secA)

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon