Take L.C.M of the given expression, we get
a(b−c)2(b−c)+b(c−a)2(c−a)+c(a−b)2(a−b)(c−a)(a−b)(b−c)
=a(b−c)3+b(c−a)3+c(a−b)3(c−a)(a−b)(b−c)
=a(b−c)3−b(b−c+a−b)3+c(a−b)3(c−a)(a−b)(b−c)
=a(b−c)3−b(b−c)3−b(a−b)3−3b(b−c)(a−b)(a−c)+c(a−b)3(c−a)(a−b)(b−c)
=(b−c)3(a−b)+(a−b)3(c−b)+3b(b−c)(c−a)(a−b))(b−c)(c−a)(a−b)
=(b−c)(a−b)((b−c)2−(a−b)2)(b−c)(c−a)(a−b)+3b(b−c)(c−a)(a−b)(b−c)(c−a)(a−b)
=(b−c)(a−b)((b−c+a−b)(b−c−a+b))(b−c)(c−a)(a−b)+3b
=(b−c)(a−b)(a−c)(2b−a−c)(b−c)(a−b)(c−a)+3b
=−(2b−a−c)+3b
=a+b+c