wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following statements.
cos6A+sin6A=13sin2A+cos2A.

Open in App
Solution

We have,
LHS =sin6A+cos6 A

LHS =(sin2A)3+(cos2A)3

using, a3+b3=(a+b)(a2ab+b2), we get

LHS =(sin2A+cos2A){(sin2A)2+(cos2A)2sin2Acos2A)}

Using (sin2A+cos2A=1), we get

LHS ={(sin2A)2+(cos2A)2+2sin2Acos2A2sin2Acos2AsinAcos2A}

LHS ={(sin2A+cos2A)23sin2Acos2A}=13sin2Acos2A=RHS


ALTERNATIVELY

LHS =(sin2A)3+(cos2A)3

LHS =(sin2A+cos2A)3sin2Acos2A(sin2A+cos2A) ...... [a3+b3=(a+b)33ab(a+b)]

LHS =13sin2Acos2A= RHS.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon