1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Implicit Differentiation
Prove the fol...
Question
Prove the following :
tan
A
s
e
c
A
-
1
=
tan
A
+
s
e
c
A
+
1
tan
A
+
s
e
c
A
-
1
Open in App
Solution
RHS
=
tan
A
+
s
e
c
A
+
1
tan
A
+
s
e
c
A
-
1
=
tan
A
+
(
1
+
s
e
c
A
)
tan
A
-
(
1
-
s
e
c
A
)
=
tan
A
+
(
1
+
s
e
c
A
)
tan
A
-
(
1
-
s
e
c
A
)
×
tan
A
+
(
1
-
s
e
c
A
)
tan
A
+
(
1
-
s
e
c
A
)
=
tan
2
A
+
tan
A
(
1
-
s
e
c
A
)
+
tan
A
(
1
+
s
e
c
A
)
+
(
1
+
s
e
c
A
)
(
1
-
s
e
c
A
)
tan
2
A
-
(
1
-
s
e
c
A
)
2
=
tan
2
A
+
tan
A
-
tan
A
s
e
c
A
+
tan
A
+
tan
A
s
e
c
A
+
1
-
s
e
c
2
A
tan
2
A
-
(
1
+
s
e
c
2
A
-
2
s
e
c
A
)
=
1
+
tan
2
A
+
2
tan
A
-
s
e
c
2
A
tan
2
A
-
1
-
s
e
c
2
A
+
2
s
e
c
A
=
2
tan
A
-
1
-
1
+
2
s
e
c
A
=
2
tan
A
2
(
s
e
c
A
-
1
)
=
tan
A
s
e
c
A
-
1
=
LHS
Hence
,
proved
.
Suggest Corrections
0
Similar questions
Q.
Prove the following identities:
(
s
e
c
A
−
c
o
s
e
c
A
)
(
1
+
t
a
n
A
+
c
o
t
A
)
=
t
a
n
A
s
e
c
A
−
c
o
t
A
c
o
s
e
c
A
Q.
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A