Prove the following trigonometric identities:
cos A1−tan A+sin A1−cot A=sin A+cos A
Ans:
To prove,
cosA1−tanA+sinA1−cotAcosA1−tanA+sinA1−cotA = sin A + cos A
Considering left hand side (LHS),
= cosA1−tanA+sinA1−cotAcosA1−tanA+sinA1−cotA
= cosA1−sinAcosA+sinA1−cosAsinAcosA1−sinAcosA+sinA1−cosAsinA
= cos2AcosA−sinA−sin2AcosA−sinAcos2AcosA−sinA−sin2AcosA−sinA
= cos2A−sin2AcosA−sinAcos2A−sin2AcosA−sinA
= (cosA+sinA)(cosA−sinA)cosA−sinA(cosA+sinA)(cosA−sinA)cosA−sinA
= cos A + sin A
Therefore, LHS = RHS
Hence proved