wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the identity

1+sinθ1-sinθ-1-sinθ1+sinθ=2cotθ


Open in App
Solution

Prove the identity

Given data: 1+sinθ1-sinθ-1-sinθ1+sinθ=2cotθ

Proof:

L. H. S

=1+sinθ1-sinθ-1-sinθ1+sinθ=1+sinθ1-sinθ×1-sinθ1-sinθ-1-sinθ1+sinθ×1+sinθ1+sinθ=1-sin2θ(1-sinθ)2-1-sin2θ(1+sinθ)2=cos2θ(1-sinθ)2-cos2θ(1+sinθ)2=cosθ1-sinθ-cosθ1+sinθ=cosθ11-sinθ-11+sinθ=cosθ1+sinθ-1+sinθ1-sin2θ=cosθ×2sinθcos2θ=2sinθcosθ=2tanθ=2cotθtanθ=1cotθ

= R. H. S

Therefore, L. H. S = R. H. S

Hence, 1+sinθ1-sinθ-1-sinθ1+sinθ=2cotθ is proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon