Prove the identity
1+sinθ1-sinθ-1-sinθ1+sinθ=2cotθ
Given data: 1+sinθ1-sinθ-1-sinθ1+sinθ=2cotθ
Proof:
L. H. S
=1+sinθ1-sinθ-1-sinθ1+sinθ=1+sinθ1-sinθ×1-sinθ1-sinθ-1-sinθ1+sinθ×1+sinθ1+sinθ=1-sin2θ(1-sinθ)2-1-sin2θ(1+sinθ)2=cos2θ(1-sinθ)2-cos2θ(1+sinθ)2=cosθ1-sinθ-cosθ1+sinθ=cosθ11-sinθ-11+sinθ=cosθ1+sinθ-1+sinθ1-sin2θ=cosθ×2sinθcos2θ=2sinθcosθ=2tanθ=2cotθ∵tanθ=1cotθ
= R. H. S
Therefore, L. H. S = R. H. S
Hence, 1+sinθ1-sinθ-1-sinθ1+sinθ=2cotθ is proved.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.