consider
(n!)2≤nn(n!)part
n≤n
(n−1)≤n
(n−2)≤n
.....
.....
.....
1≤n
∴n(n−1)(n−2)......1≤n.n.n......ntimes
n!≤nn
multiply both sides by n!, we get:
(n!)2≤nn(n!)
Now consider the second part nn(n!)≤(2n!)
as
n≤2n
n≤(2n−1)
n≤(2n−2)
.....
.....
.....
≤[2n−(n−1)]
∴n.n.....ntimes≤2n(2n−1)(2n−2)........[2n−(n−1)]
nn≤2n(2n−1)(2n−2)........[n+1]
multiply both sides by n!, we get
nnn!≤2n(2n−1)(2n−2)........[n+1](n!)
nnn!≤(2n!)
Hence Proved!