Given:△ABC∼△PQR
To prove:ar(△ABC)ar(△PQR)=(ABPQ)2=(BCQR)2=(ACPR)2
Construction:Draw AM⊥BC and PN⊥QR
Proof:area(△ABC)=12×base×height=12×BC×AM ........(1)
area(△PQR)=12×base×height=12×QR×PN ........(2)
Dividing (1) by (2) we get
ar(△ABC)ar(△PQR)=12×BC×AM12×QR×PN
=BC×AMQR×PN .......(A)
In △ABM and △PQN
∠B=∠Q as △ABC∼△PQR and angles of similar triangles are equal.
∠M=∠N (both 90∘)
△ABM∼△PQN by AA similarity
∴ABPQ=AMPN (corresponding sides of similar triangles are proportional) .......(B)
From (A)
ar(△ABC)ar(△PQR)=BC×AMQR×PN=BCQR×ABPQ from (B) .........(C)
Now, Given:△ABC∼△PQR
⇒ABPQ=BCQR=ACPR
Putting in (C) we get
⇒ar(△ABC)ar(△PQR)=ABPQ×ABPQ=(ABPQ)2
Now, again using ABPQ=BCQR=ACPR
⇒ar(△ABC)ar(△PQR)=(ABPQ)2=(BCQR)2=(ACPR)2