wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Q. The incomes of Ram and Shyam are in the ratio of 5:3 and their savings are in the ratio of 2:3. If expenditure of Ram is 4/5th of his income, find the ratio of their expenditures?

राम और श्याम की आय का अनुपात 5:3 है और उनकी बचत का अनुपात 2:3 है। यदि राम का व्यय उसकी आय का 4/5 है, तो उनके व्ययों का अनुपात पता कीजिए?


A
7:3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
5:3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
5:2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
8:3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 8:3

Let assume that incomes of Ram and Shyam are 5x and 3x respectively and their savings are 2y and 3y respectively.
We know that Expenditure = Income – Saving
Thus, expenditure of Ram = 5x – 2y …..(i)
And expenditure of Shyam = 3x – 3y …..(ii)
Now we know that expenditure of Ram is 4/5th of his income and his income in 5x.
Thus, expenditure of Ram = (4/5) × 5x = 4x
From equation (i), we get:
5x – 2y = 4x
Or x = 2y
Or y = x/2
Putting value of y in equation (ii), we get:
Expenditure of Shyam = 3x3(x2)=3x2
Ratio of Expenditure = 45×5x3x2=4x×23x=83
Hence option (d) is correct.

मान लीजिए कि राम और श्याम की आय क्रमशः 5x और 3x हैं और उनकी बचत क्रमशः 2y और 3y है।
हम जानते हैं कि व्यय = आय – बचत
इस प्रकार, राम का व्यय = 5x – 2y (i)
और श्याम का व्यय = 3x – 3y (ii)
अब हम जानते हैं कि राम का व्यय उसकी आय का 4/5 है और उसकी आय 5x है।
इस प्रकार, राम का व्यय = 45×5x=4x
समीकरण (i) से, हम पाते हैं:
5x – 2y = 4x
या x = 2y
या y = x/2
समीकरण (ii) में y का मान रखने पर, हम पाते हैं:
श्याम का व्यय = 3x3(x2)=3x2
इस प्रकार उनके व्ययों का अनुपात = 4x3x2=83
अतः विकल्प (d) सही है।


flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Is Light a Traveller?
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon