Sum of all interior angles of a triangle is 180∘.
Therefore, in ΔXYZ,
∠X+∠XYZ+∠XZY=180∘
62∘+54∘+∠XZY=180∘
∠XZY=180∘−116∘
∠XZY=64∘
∠OZY=642=32∘ (OZ is the angle bisector of ∠XZY)
Similarly, ∠OYZ=542=27∘
Using angle sum property for ΔOYZ, we obtain,
∠OYZ+∠YOZ+∠OZY=180∘
27∘+∠YOZ+32∘=180∘
∠YOZ=180∘−59∘
∠YOZ=121∘