Question 3
In figure, if ∠1=∠2 and ΔNSQ≅ΔMTR, then prove that ΔPTS∼ΔPRQ.
Given, ΔNSQ≅ΔMTR and ∠1=∠2
To prove :ΔPTS∼ΔPRQ
Proof :
Since, ΔNSQ≅ΔMTR
So, SQ = TR ...(i)
Also, ∠1=∠2⇒ PT=PS …(ii) [since, sides opposite to equal angles are also equal]
Dividing Eqn. (ii) by (i), we get,
PSSQ=PTTR
⇒ ST∥QR [byconverseofbasicproportionallytheorem]
∴ ∠1=∠PQR
and ∠2=∠PRQ
In ΔPTS and ΔPRQ,
∠P=∠P [common angles]
∠1=∠PQR (Corresponding angles)
∠2=∠PRQ (Corresponding angles)
∴ ΔPTS∼ΔPRQ [by AAA similarity criterion]